Weakly-supervised appraisal analysis
نویسندگان
چکیده
This article is concerned with the computational treatment of Appraisal, a Systemic Functional Linguistic theory of the types of language employed to communicate opinion in English. The theory considers aspects such as Attitude (how writers communicate their point of view), Engagement (how writers align themselves with respect to the opinions of others) and Graduation (how writers amplify or diminish their attitudes and engagements). To analyse text according to the theory we employ a weakly-supervised approach to text classification, which involves comparing the similarity of words with prototypical examples of classes. We evaluate the method’s performance using a collection of book reviews annotated according to the Appraisal theory.
منابع مشابه
Linguistic Issues in Language Technology – LiLT
This article is concerned with the computational treatment of Appraisal, a Systemic Functional Linguistic theory of the types of language employed to communicate opinion in English. The theory considers aspects such as Attitude (how writers communicate their point of view), Engagement (how writers align themselves with respect to the opinions of others) and Graduation (how writers amplify or di...
متن کاملWeakly Supervised Learning for Hedge Classification in Scientific Literature
We investigate automatic classification of speculative language (‘hedging’), in biomedical text using weakly supervised machine learning. Our contributions include a precise description of the task with annotation guidelines, analysis and discussion, a probabilistic weakly supervised learning model, and experimental evaluation of the methods presented. We show that hedge classification is feasi...
متن کاملSelf-Transfer Learning for Fully Weakly Supervised Object Localization
Recent advances of deep learning have achieved remarkable performances in various challenging computer vision tasks. Especially in object localization, deep convolutional neural networks outperform traditional approaches based on extraction of data/task-driven features instead of handcrafted features. Although location information of regionof-interests (ROIs) gives good prior for object localiz...
متن کاملMulti-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning
Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly...
متن کاملA General Formulation for Safely Exploiting Weakly Supervised Data
Weakly supervised data is an important machine learning data to help improve learning performance. However, recent results indicate that machine learning techniques with the usage of weakly supervised data may sometimes cause performance degradation. Safely leveraging weakly supervised data is important, whereas there is only very limited effort, especially on a general formulation to help prov...
متن کامل